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ABSTRACT 

Three-dimensional contact problems without friction have been studied using the 

Boundary Face Method (BFM). In this paper, a non-conforming contact discretization 

approach is used to enforce the contact conditions between the two contact surfaces. 

This method is based on Node-To-Surface (NTS), and there is no need that the 

identical discretization is performed along the contact surfaces of both bodies. The 

contact equations are written explicitly with both tractions and displacements which 

are retained as unknowns in Boundary Integral Equation (BIE). An iterative procedure 

is presented to determine the correct contact zone by obtaining a solution compatible 

with the contact conditions (no interpenetrations between the domains and no tensile 

on the final contact zone). Several numerical examples have been presented to 

illustrate the applicability of the method. 
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1. Introduction 

Boundary value problems involving contact are of great importance in industry 

related to mechanical and civil engineering. The load transferred through a 

mechanical assemblage usually causes stress concentrations, which increase the risk 

for crack initiations, propagations and fatigue failure. Contact problems are complex 

and inherently nonlinear due to their moving boundaries and the friction along contact 

surfaces if it is involved. When solid bodies are brought, they will either be initially in 

contact at a point, along a line, or over a surface. Under the action of external loads, 

the contact area changes progressively and in most cases the extent of contact is a 

priori unknown, which presents a boundary non-linearity. Even when friction is 

present between the contacting surfaces, the problem becomes even more difficult 

because the contact area may exhibit adhesion and slip zones which are of unknown 

extent and often of a more complicated form than the contact area itself. In a word, 

the solution of the contact problems will depend on the magnitude of the external load, 

the material properties of the contacting bodies and the frictional behavior at the 

contact interfaces. 

  Since Hertz [1] published his famous work on normal contact between elastic 

bodies, many papers has been published giving analytical solutions. An excellent 

review of all these work can be found in Gladwell [2] and Johnson [3]. However, a 

common feature in these studies is that the geometries (infinite or semi-finite 

domains), properties of the materials (isotropic) and characterization of the contact 

(frictionless) are assumed, so that available mathematical and mechanical tools can be 

used to obtain a closed-form solution of the problem. Obviously, these approaches are 

very restrictive and can only be applied to several special problems. 

  With the rapidly increasing power of modern computers, more and more efforts 

have been devoted to improve the numerical treatment of contact problems. 

Numerical methods mainly based on the finite element method (FEM), boundary 

element method (BEM) and meshless methods have been applied to try to develop a 

general tool of analysis. The FEM has been widely used to analyze the contact 

problems in many engineering examples. An excellent review of FEM in contact 



mechanics can be found in the text books by Zhong [4], Laursen [5] and Wriggers[6], 

and as the chapters in the FEM text books, for example, Bathe [7], Crisfield [8], 

Belytschko [9], and Zienkiewicz and Taylor [10]. The BEM is regarded as an 

important complementary method to FEM. The BEM appears to be very suitable to 

deal with the contact problems when the non-linearity only occurs at the contact 

boundary.  

The first application of BEM to contact problems can be traced back to Andersson 

[11] in 1980. Constant elements were employed and only the frictionless contact 

problems were considered. Later, the friction and linear and quadratic elements were 

introduced in his next work [12]. Paris et al. [13] applied BEM to solve 

two-dimensional contact problems using discontinuous elements. The nonlinear 

friction law was introduced to study two-dimensional frictional contact problems with 

BEM by Jin et al. [14]. Dandekar and Conant [15-17] presented their work and 

proposed an efficient equation solver for two-dimensional frictional contact problems. 

For three-dimensional problems, Paris et al. [18] did the first work for frictionless 

contact problems, and then Garrido et al. [19] expanded their work to solve the 

frictional contact problems. Leahy and Becker [20,21] developed the 

three-dimensional frictional contact problems using a quadratic boundary element 

formulation. Segond and Tafreshi [22] presented their work to implement the 

frictionless and infinite friction conditions in contact problems. All the mentioned 

above, these approaches imposed the contact constraints directly and written the 

contact equations explicitly. Meanwhile, other formulations to treat the contact 

conditions also can be found. Takahashi [23] proposed the flexibility approach to 

analyze the two-dimensional contact problems between an elastic body and a rigid 

body using constant element, and expanded this approach to study contact problems 

between elastic bodies with friction. Yamazaki et al. [24] published their approaches 

based on penalty parameter method. The same as FEM, the mathematical 

programming approach was also introduced to analyze frictional contact problems 

with BEM [25-27]. All the work mentioned above, the conforming contact 

discretization approach has been used, which requires the identical discretization in 



the contact area. The contact conditions are imposed by means of node to node 

sequence. 

Blazquez et al. [29-31] did the first work using the non-conforming contact 

discretization to study the two-dimensional frictionless contact problems, and 

expanded this approach to the frictional contact problems. Paris et al. [32] also 

presented their same work and suggested using linear discontinuous elements for 

nonconforming contact discretization in two-dimensional contact problems. Martin 

and Aliabadi [33] proposed a BE hyper-singular formulation for two-dimensional 

contact problems using non-conforming contact discretization. However, all these 

works have been implemented to solve two-dimensional contact problems. 

The boundary face method (BFM) has been developed by Zhang et al. [37] which 

is also based on the boundary integral equation. However, both boundary integration 

and variable approximation in BFM are performed on boundary faces, which are 

represented in parametric form exactly as the boundary representation data structure 

in most CAD systems. Later, many implements based on the BFM can be found 

[38-43].  

Therefore, the same as BEM, there are three main advantages for using BFM 

when studying contact problems: 

(1) Only the boundaries of the contacting bodies need to be discretized, which are 

primary interest in solution procedure. It is not necessary to compute the internal 

stress and displacement. 

(2) The contact equations are written explicitly with both traction and displacement 

which are independent variables that appear in BEM. It is also able to couple the 

normal and tangential tractions directly in the system equations when the friction is 

present. 

(3) The contact pressure which can be obtained directly from the traction 

distribution, is a primarily unknown quantity, and is solved with the same accuracy 

as the displacement unknown. 

In this paper, the BFM will be used to solve the three-dimensional frictionless contact 

problems with non-conforming contact discretization approach. So, there is no need 



that the identical discretization is performed along the contact surfaces of both bodies. 

An iterative procedure is presented to determine the correct contact zone by obtaining 

a solution compatible with the contact conditions (no interpenetrations between the 

domains and no tensile on the final contact zone). Although the friction appears 

naturally in all contact problems, from a numerical point of view, our work in this 

paper represents a previous development to the analysis of three-dimensional 

frictional contact problems. The rest of this article is organized as follows: in Section 

2, we introduce a general description of frictionless contact problem. In Section 3, the 

boundary integral equation for contact problem is introduced, and the definition of 

contact conditions with non-conforming contact discretization is presented in Section 

4. In Section 5, the solution procedure is developed. Numerical examples are 

presented to illustrate the applicability of the algorithm in Section 6. Finally, the paper 

ends with conclusions in Section 7. 

2. Definition of the frictionless contact problem 

In this paper we consider two linear elastic bodies A and B which occupy respectively 

the domains DA and DB in R3. The boundaries of the two domains are defined as SA 

and SB. Two complementary zones SC and SN will be defined in each of the 

boundaries. The zone SC is the part of the boundary which makes contact with the 

other domain, and the zone SN is the part of the boundary where the contact does not 

occur. Therefore 

, ( , )K K
C NS S S K A B U  

  The non-contact zone K
NS is considered subdivided into three zones depending on 

the boundary conditions on them. The displacements are known on K
NUS , the stress 

vectors are known on K
NTS and the mixed conditions of displacements and stresses are 

prescribed on . Therefore K
NUTS

, ( , )K K K K
N NU NT NUTS S S S K A B U U  

As a result, the boundary of each body can be considered as consisting of nodes 

outside the contact zone and nodes inside the contact zone which will be referred as 



contact nodes in this paper. Outside the contact zone either displacements or tractions 

(but not both) are known at every boundary node. Inside the contact zone neither 

displacements nor tractions are known. Consider two bodies (A and B), the contact 

zone SC, is formed between these bodies due to the application of external forces as 

shown in Fig.1.  

In contact problems, unilateral conditions [44] hold, namely, 

(1) No material interpenetration. 

(2) The normal component of traction is compressive. 

(3) The complementary condition must be satisfied. 

For convenience, let PA denote a point on body A and PB a point on body B. Suppose 

the two points are within the potential contact zone and that the tangent and normal 

vectors at the two points are shown in Fig.2. These conditions can be expressed by the 

following equations (with reference to Fig.2): 

1 1 1( ) ( ) 0A Bg u x u x                            (1) 

1 1( ) ( ) 0A Bp t x t x                            (2) 

0pg                                  (3) 

where g is contact gap, 1 is the initial normal distance between the two points and 

p is contact pressure (negative normal tractions). For frictionless problems, the 

tangent tractions satisfy the following equation: 

2 2 3 3( ) ( ) ( ) ( ) 0A B A Bt x t x t x t x                         (4) 

where the subscripts 1, 2 , 3 refer to the axes shown in Fig.2.  

Therefore, the local coordinate system has to be introduced to establish the contact 

equations. For convenience, take two-dimension problems for example as shown in 

Fig.3. The BFM can accurately obtain the unique normal on the node P between the 

elements S1 and S2 which is directly calculated by the parametric form of the 

boundary. Nevertheless, the contact normal on the node P is not unique which is 

calculated by the elements S1 and S2 in conventional BEM/FEM. This is the advantage 

of BFM over the BEM and FEM. 



  In the absence of friction the elastic contact problem is path independent, and the 

total quantities can be used to solve the contact problem. An iterative procedure is 

used to find the final contact zone since no energy is dissipating in the contact zone. 

3. Boundary integral equation for contact problem 

In general, the boundary integral equation for each elastic contacting body can be 

written in the following form with the absence of body forces 

                 (5) 
( ) ( , ) ( ) ( ) ( , ) ( ) ( )

, 1, 2,3 ,

ij j ij j ij jS S
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 

 
 

where uj(Q) and tj(Q) are the displacements and stress vectors at points on the 

boundary and and are fundamental solutions and can be given as 

following for the three-dimensional case 

( , )ijT P Q ( , )ijU P Q

          , ,

1
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where G and v are the elastic constants of the material, r represents the positional 

vector with its origin at point P and its end at point Q, and n is the outward normal to 

the boundary. 

Discretizing the boundary using the quadrilateral elements, the discretized format 

of Eq. (5) can be obtained as 

       

,
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where Sk represents the kth boundary element, Ne represents the total number of 

elements, M represents the number of nodes per element, ,k l
ju and are the 

displacement and traction components of the lth node of the kth element, respectively. 

In BFM, the numerical integrations of the boundary element in Eq. (8) are 

implemented in the parametric space of the boundary surfaces, where the geometric 

,k l
jt



data at Gaussian quadrature points in integration elements, such as the coordinates, 

the Jacobian and the outward normal are calculated directly from the surface rather 

than elements, thus no geometric error will be introduced. 

With the collocation point P being placed at all nodes, the matrix from of Eq. (8) 

can be written as 

Hu = Gt                              (9) 

Considering the boundary nodes which is in contact or not in the contact problems, 

Eq. (9) can be written as 

NN NC N NN NC N

CN CC C CN CC C

     


 
    

     

H H u G G t

H H u G G t
 
 

               (10) 

Considering the boundary and contact conditions, the displacements and tractions are 

unknown for the nodes in the contact zone, Eq. (10) is written as  

N
NN NC NC

C
CN CC CC

C

 
      
   

 

x
A H G

u
A H G

t

b                    (11) 

where N denotes the non-contact nodes and C denotes the contact nodes; xN is the 

unknowns at the non-contact nodes with boundary conditions. 

For both contact bodies A and B, Eq. (11) can be assembled. Therefore, the system 

matrix can be assembled as 

  

AA A A
NNN NC NC
AA A A
CCN CC CC
AB B B
CNN NC NC
BB B B
NCN CC CC
BA
C
BB
C

C

C
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uA H G

tA H G
f

xA H G

u

t

          (12) 

where the CA and CB denote the contact equations for the contact nodes on the contact 

body A and B, respectively. 

In Eq. (12), three algebraic equations can be obtained for each collocation node of 

the contacting bodies by the Boundary Integral Equation (BIE). Considering the 

boundary and contact conditions, there are three unknowns (three displacement 

components or three traction components or mixed displacement and traction 



components) for the nodes outside the contact zone; there are six unknowns (three 

displacement components and three traction components) for nodes inside the contact 

zone. As a result, the number of algebraic equation is less than the number of 

boundary unknowns. So, three additional equations must be complemented for each 

node inside the contact zone, according to the contact conditions which will be shown 

in the next section. 

4. Definition of contact conditions with non-conforming contact discretization 

An antecedent of the non-conforming contact discretization approach can be found in 

Hallquist [35] using finite element method. This contact model is usually called as 

‘node-to-segment’ in 2D or ‘node-to-surface’ in 3D in certain research papers.  

In this approach, the shape functions are used to establish the contact constraints 

between a contact node of one body and a boundary element (target element) of the 

other where the target element is obtained by the closest point projection. Then 

contact constraints are applied by constructing three additional equations for each 

contact node. Be different from the FEM, the contact equations are written explicitly 

with both tractions and displacements which are retained as unknowns in BEM. We 

apply the compatibility conditions to one of the bodies involved in the contact, and 

the equilibrium conditions to the other for establishing the complementary constraint 

equations which is possible to state that one body controls the displacements and the 

other controls the tractions. 

In this section, we present two approaches to construct the contact equations for 

frictionless contact conditions. Before establishing the contact equations, we assume 

that body A controls the tractions, and body B controls the displacements on the 

contact zone. Therefore, the contact equations can be written as following: 

 Equation for equilibrium condition on body B 

,
1

1

( , )
e

1
B k A

k
k

t N  


  t                         (13) 

 Equation for compatibility of normal displacements on body A 



,
1

1
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A
k

k

u N u1 1
k B  



                          (14) 

 Equation for frictionless condition 

2 3 2 3 0A A B Bt t t t                             (15) 

where the subscripts 1, 2, 3 refer to the local coordination axis shown as Fig.4. 

Different from the ‘node-to-node’ contact model in which 1-axes is obtained by an 

average unit normal between the outward normal vectors at the two nodes, here, 

1-axes is taken coincident with the outward normal of the target element at the target 

point. The other two axes are taken in the plane perpendicular to the 1-axes. 1 is the 

normal distance between the contact node and the target point. The contact equations 

are obtained by enforcing the equilibrium, compatibility and frictionless conditions at 

the contact nodes as shown in Table 1.  

5. The solution procedure 

In the numerical scheme presented here, a potential contact zone will be initially 

assumed in order to determine the final contact zone. The BIEs (Eq. (8)) and contact 

equations (as shown in section 4) are used to obtain the displacements and tractions at 

contact nodes. Then the contact conditions have to be checked and updated with the 

displacements and tractions at the contact nodes. An iterative procedure is used to 

obtain the correct solution with contact pressure (negative normal tractions) inside the 

contact zone and where no interpenetrations outside the contact zone. Meanwhile, the 

static condensation technique is used to obtain a system of a reduced order [36]. In the 

iterative procedure, only a part of unknowns is involved to solve the contact 

problems. 

   Therefore, the solution procedure to detect the correct contact zone has the 

following steps: 

Step1. Definition of the initial contact zones SCP on the contact bodies. A node is 

denoted as contact node when its projected distance to a corresponding 

boundary element is relatively small. 

Step2. Calculating the boundary integrals in Eq. (8) and assembling the integral 



equations for the contact bodies. 

Step3. Performing the static condensation procedure and assembling the final equation 

of system by introducing the boundary conditions and contact conditions. 

Step4. Solving the final system and calculating the displacements and tractions at the 

contact nodes of the assumed SCP . 

Step5. Checking the contact pressure at the contact nodes. If positive normal tractions 

are presented at some contact nodes, they are excluded from the contact zone, 

returning again to step 3. Otherwise, the algorithm follows to step 6. 

Step6. Checking that no interpenetrations occur outside the contact zone. If there are 

interpenetrations, the nodes where interpenetrations have occurred are 

included in the contact zone, and returning again to step 3. Otherwise, the 

correct contact zone is obtained. 

It is obvious that the computational efficiency of this algorithm depends to a great 

extent on the initial estimation of contact zone. 

6. Numerical examples 

In this section, several classical contact problems will be studied to illustrate the 

applicability of the presented method. In the first example, an elastic rectangular 

punch is compressed on the foundation. Since the contact zone is known, this problem 

can be solved in one step with the absence of friction. The second example presents 

an elastic curve punch compressing on the foundation. An iterative procedure has to 

be used to determine the final contact zone. 

6.1 Compression of an elastic rectangular punch on foundation 

This example corresponds to the contact problem as shown in Fig.6. The same 

properties have been taken for both bodies: Young’s modulus Ep=Eb=200GPa and 

Poisson’s ratio v=0.3. The uniform pressure p=2MPa is applied on the top face of 

punch. The bottom face of the foundation is fixed. Since the size of contact zone is 

known and cannot change, no iterative is needed for the solution. 

In BFM, the discontinuous linear element has been used to discrete the boundaries 

of punch and foundation. As shown in Fig.7(a), a total of 600 elements have been 



obtained for the punch and 840 elements for the foundation. The static condensation 

technique is performed on both punch and foundation, where the variables 

corresponding to the nodes on the contact faces (the bottom face of punch and the top 

face of foundation) are involved. And only 1200 DOF and 1500 DOF are managed on 

punch and foundation, respectively, due to the static condensation. 

In ABAQUS, the punch and foundation are both discretized by C3D8R element 

with mesh size 0.5mm. Therefore, 9261 nodes and 8000 elements on the punch and 

35301 nodes and 32000 elements on the foundation are obtained as shown in Fig.7(b).  

The surface-to-surface discretization method and finite sliding formulation are used in 

the contact interaction. The comparison of the contact pressure along the red line 

which is the central axis of the bottom face of punch as shown in Fig.6(b) between 

ABAQUS and BFM is presented in Fig.8. The distribution of contact pressure on the 

contact zone is also shown in Fig.9. It can be seen that the contact pressure become 

very high as a singularity at the sharp edge of the punch and the BFM can get higher 

contact pressure to show the stress concentration. 

Meanwhile, fixing the Young’s modulus of the foundation, we change the Young’s 

modulus of the punch and study the contact pressure along the red line with different 

relative stiffness Ep/Eb as shown in Fig.10. 

When the punch becomes stiffer, the stress concentration phenomenon is more 

obvious. The contact pressure tends to a constant equal to the applied pressure with 

the relative stiffness Ep/Eb =0. As shown in Fig.10, the contact pressure is constant 

equal to the applied pressure p=2MPa, when the relative stiffness Ep/Eb is equal to 

1/1000, where the foundation can be taken as the rigid body. 

6.2 Compression of an elastic curve punch on foundation 

As shown in Fig.11, an elastic curve punch is compressed on the foundation. The 

widths of the punch and foundation are both 25mm. The uniform pressure p=80KPa is 

applied on the top face of punch. The bottom face of the foundation is fixed. The 

same properties have been taken for both bodies: Young’s modulus E=2.1MPa and 

Poisson’s ratio v=0.3. In this example with a unknown contact zone, an iterative 

algorithm is needed for determining the final contact zone. 



In BFM, a total of 1508 elements have been obtained for the punch and 1528 

elements for the foundation as shown in Fig.12(a). The static condensation technique 

is performed on both punch and foundation, where the variables corresponding to the 

nodes on the contact faces (the bottom face of punch and the top face of foundation) 

are involved. And only 3600 DOF and 4320 DOF are managed on punch and 

foundation, respectively, due to the static condensation. In ABAQUS, the punch and 

foundation are both discretized by C3D8R element with mesh size 1.2mm and 1.5mm, 

respectively. Therefore, 9792 nodes and 8415 elements on the punch and 10941 nodes 

and 9640 elements on the foundation are obtained as shown in Fig.12(b). The 

surface-to-surface discretization method and finite sliding formulation are used in the 

contact interaction. 

The comparison of the contact pressure along the red line which is on the bottom 

face of punch as shown in Fig.11(b) between ABAQUS and BFM is presented in 

Fig.13. The distribution of contact pressure on the contact zone is also shown in 

Fig.14. 

In Fig.13, it can be seen that the maximum contact pressure occurs at the center 

of the contact zone, and decreases steadily to zero at the edge of the contact zone. The 

contact pressure obtained by BFM is higher than that of ABAQUS. 

6. Conclusions 

Three-dimensional contact problems without friction have been studied using the 

Boundary Face Method (BFM). In the BFM, the numerical integrations of the 

boundary element are implemented in the parametric space of the boundary surfaces, 

where the geometric data at Gaussian quadrature points in integration elements, such 

as the coordinates, the Jacobian and the outward normal are calculated directly from 

the surface rather than elements, thus no geometric error will be introduced, and the 

unique outward normal on the contact nodes can be obtained by the parametric space 

of the boundary surface.  

In this paper, a non-conforming contact discretization approach is used to enforce 

the contact conditions between the two contact surfaces. This method is based on 

Node-To-Surface (NTS), and there is no need that the identical discretization is 



performed along the contact surfaces of both bodies. The contact equations are written 

explicitly with both tractions and displacements which are retained as unknowns in 

BIE. An iterative procedure is presented to determine the correct contact zone by 

obtaining a solution compatible with the contact conditions (no interpenetrations 

between the domains and no tensile on the final contact zone). Several examples have 

been presented to demonstrate the applicability of the presented algorithm. 

   It is obvious that the solution procedure of the frictionless contact problems 

developed is relatively simple. However, it can be the first step in a frictional analysis 

which is our ongoing work. 
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Table 1. Unknowns and corresponding equations for contact node 

Equations 
Unknowns at a 
contact node 

Body A Body B 

1u  Eq. (13) BIE 

2u  BIE  BIE 

3u  BIE BIE 

1t  BIE Eq. (12) 

2t  Eq. (14) Eq. (14) 

3t  Eq. (14) Eq. (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

 

Fig.1. Problem definition 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 

Fig.2. Two points in contact and the unit boundary vectors 

 
 
 
 
 
 
 
 



 

 

(a) BFM                         (b) BEM/FEM 

Fig.3. Definition of contact normal in BFM and BEM/FEM 

 
 



 

Fig.4. The ‘node-to-surface’ contact model 

 



 
 

 

Fig.5. The iterative procedure for the frictionless contact problems 

 
 
 
 
 



 
 

 

(a) Geometry                    (b) Problem definition 

Fig.6. Elastic rectangular punch on foundation 

 
 
 
 



 

 

(a) BFM                       (b) ABAQUS 

Fig.7. Mesh models of BFM and ABAQUS 

 
 
 



 

 

Fig.8. Comparison of the contact pressure between ABAQUS and BFM. 

 
 
 
 
 
 
 



 

(a) ABAQUS                     (b) BFM 

Fig.9. The distribution of contact pressure on the punch. 

 



 

 

Fig.10. The contact pressure with different relative stiffness Ep/Eb. 

 
 
 



 

(a) Geometry                        (b) Problem definition 

Fig.11. Elastic curve punch on foundation. 

 



 

 
(a) BFM                        (b) ABAQUS 

Fig.12. Mesh models of BFM and ABAQUS. 

 
 
 
 



 

 
Fig.13. Comparison of the contact pressure between ABAQUS and BFM. 



 

 
(a) ABAQUS                      (b) BFM 

Fig.14. The distribution of contact pressure on the punch 

 
 

 
 
 


